If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-5k-7=0
a = 1; b = -5; c = -7;
Δ = b2-4ac
Δ = -52-4·1·(-7)
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{53}}{2*1}=\frac{5-\sqrt{53}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{53}}{2*1}=\frac{5+\sqrt{53}}{2} $
| 13+9z=8z | | 28-x=26.1 | | -2-2u=16u-20 | | 2+10+4t=7t-9 | | 18-3m=9 | | 2t^2-7t+20=0 | | 6=1.8x-2.4 | | 3n-8+5n+3=8n+5+4n | | 6+20m=2m+17+19m | | 6x2-41x-56=0 | | y-42.1=11.5 | | 2+10+4t=7t–9 | | 9x^2-14x+18=0 | | 3x(3x)+12x=15 | | 3y+7=9y | | 0=2x2+72 | | -4x2+x=-4 | | 24/n=30/72 | | -18w-2=17-17w | | 28-x=-26.1 | | 3y/5-8=y | | q+33-7= 0 | | -8h–19=19–5h+16 | | -8h-19=19+5h+16 | | 2^x2^-3x^+84=16^3^-5x | | -4b+10b=8b | | a÷3+11=5 | | 0.5ℓ+1.5mm=0.5ℓm=ℓ−7 | | 9(f-97)=-57 | | 2/3h-1/2h+11=8 | | y+27=-y+5 | | 4x/3=x/12+15/2 |